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On the inversion of the von Kármán street
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This paper considers the incompressible two-dimensional laminar flow around a
square cylinder symmetrically positioned in a channel. In this type of flow, even if
vortices of opposite sign are alternately shed from the body into the wake as in the
unconfined case, an inversion of their position with respect to the flow symmetry
line takes place further downstream. A numerical analysis is carried out to investigate
the physical origin of this phenomenon and to characterize the position in the wake
at which the vortices cross the symmetry line. It is shown that, for low to moderate
blockage ratios, the fundamental cause of the inversion of the vortices is the amount
of vorticity present in the incoming flow, and a dynamic interpretation in terms of
vorticity interference in the wake is given. Further insight is gained through a linear
stability analysis of the vortex shedding instability.

1. Introduction
The flow around a cylinder confined in a channel is of interest in many applications,

such as the design of vortex meters, in which the flow velocity is indirectly obtained
by measuring the vortex-shedding frequency. In some applications a cylinder is intro-
duced into a channel flow to enhance mixing and heat transfer. Owing to its practical
interest, this configuration, which is characterized by the blockage ratio β , i.e. the
ratio between the length of the cylinder sides and the channel height, has been widely
studied in the literature. In the present study the laminar flow around a symmetrically
confined square cylinder is considered, which has been studied in many works; for
instance, both experimental and numerical results are reported in Davis, Moore &
Purtell (1984) for β = 1/4 and 1/6, and in Suzuki et al. (1993) and Suzuki & Suzuki
(1994) for 1/20 � β � 1/2. Numerical simulations are documented in Bernsdorf et al.
(1998), Breuer et al. (2000) and Guo et al. (2003) for β = 1/8 and in Turki, Abbassi &
Nasrallah (2003) for β = 1/8, 1/6 and 1/4. A detailed analysis of the time-averaged
momentum equation is given in Saha, Muralidhar & Biswas (2000) for β = 1/10.
Finally, several studies exist in which attention is also focused on heat transfer, such
as Sharma & Eswaran (2005) and Rahnama & Hadi-Moghaddam (2005).

In the present study special attention is payed to a peculiar phenomenon that
occurs in this type of flow, i.e. the inversion of the von Kármán street in the wake.
More precisely, vortices are alternately shed in the wake as in the unconfined case, i.e.
if the flow is from left to right, clockwise and counterclockwise vortices are shed from
the upper and lower sides of the cylinder, respectively. However, at a certain distance
along the wake, depending on both the Reynolds number and the blockage ratio
β , the trajectories of the two families of vortices intersect and, further downstream,
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Figure 1. Flow configuration, frame of reference and computational domain (not in scale).

their position with respect to the symmetry line is inverted, i.e. counterclockwise and
clockwise vortices are positioned in the upper and lower half of the wake, respectively.
Experimental evidence of the inversion of the von Kármán street is available both for
laminar (Davis et al. 1984; Suzuki et al. 1993) and turbulent flow (Yao, Nakatani &
Suzuki 1995). This phenomenon also occurs for circular cylinders, as shown, for
instance, in Sahin & Owens (2004) and in Zovatto & Pedrizzetti (2001).

To our knowledge, the inversion of the von Kármán street has been studied in detail
only in Suzuki et al. (1993) and Suzuki & Suzuki (1994), in which it is argued that the
inversion occurs only for β � 0.1 and is essentially caused by the effect of the lift-up
of the vorticity layers that are adjacent to the confining walls. Note that Suzuki &
Suzuki (1994) consider a configuration with a high blockage ratio (β = 0.3); in this
case a strong interaction exists between the wake and the confining walls.

The aim of the present paper is to investigate in greater detail the inversion of
the von Kármán street for moderate values of the blockage ratio (1/10 � β � 1/6),
in which the interaction between the wake and the flow near the confining walls is
weaker than in the case considered in Suzuki & Suzuki (1994). Numerical simulations
have been carried out in order to identify which of the following factors play a leading
role in the inversion: (i) the confinement, (ii) the vorticity generated by the confining
walls and (iii) the shape of the incoming flow. The inversion of the wake vortices is
also studied here through a linear stability analysis of the flow.

2. Flow configuration, numerical tools and validation
The incompressible flow over an infinitely long square cylinder symmetrically

confined by two parallel planes is considered. Far upstream, the incoming flow is
assumed to have a Poiseuille profile with maximum centreline velocity Uc. Figure 1
shows the geometry, the frame of reference and the notation. Values of the Reynolds
number Re = DUc/ν and of the blockage ratio β =D/H are considered for which
(a) vortex shedding is present, (b) the flow is two-dimensional and (c) the incoming
Poiseuille flow is stable (roughly, ReH = UcH/ν � 2000). The first requirement imposes
a lower bound on Re, Recr, which is a function of β (see, for instance, Sharma &
Eswaran 2005 and Breuer et al. 2000). Conversely, the stability of the incoming
Poiseuille flow imposes an upper bound on Re, which is an increasing function of
β: Re = (UcH/ν)β � 2000β . Thus, vortex shedding with a stable incoming flow is
possible only if Recr < 2000β , which is satisfied only for approximately β > 1/40 if
we assume that, for low values of β , Recr approaches the critical value found in
the unconfined case, Recr � 54 (see Kelkar & Patankar 1992). The same behaviour
of Recr as β tends to zero has been observed in the case of circular cylinders (see
Sahin & Owens 2004). Finally, the flow is two-dimensional when Re is lower than an
upper bound, whose value has not been systematically studied in the literature, but
may safely be assumed to be at least equal to the one found in the unconfined case
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Grid Li/D Lo/D β Nx Ny Spacing Ne Min./Max. �x Min./Max. �y

UG 12 51 1/8 1024 128 uniform 16 0.0625/0.0625 0.0625/0.0625
SG8 12 35 1/8 660 260 stretched 90 0.010/0.165 0.012/0.107
SG6 12 35 1/6 660 260 stretched 90 0.010/0.165 0.012/0.068
SG10 12 35 1/10 660 284 stretched 90 0.010/0.165 0.012/0.116

Table 1. The computational domains and grids; for Li and Lo see figure 1; Nx and Ny are
the number of discretization points in the x- and y-directions, respectively; Ne is the number
of nodes on each edge of the cylinder; �x and �y are the discretization sizes in the x- and
y-directions, respectively.

(Re � 161, Robichaux, Balachandar & Vanka 1999). The blockage ratio is expected
to have a stabilizing effect on three-dimensional instabilities.

The incompressible and two-dimensional Navier–Stokes equations for Newtonian
fluids, written in conservative form, are discretized in space on a staggered Cartesian
mesh by a standard centred and second-order-accurate finite-difference scheme. A
parabolic velocity profile is imposed at the inflow boundary and no-slip and convective
boundary conditions are applied on the confining walls and on the outflow boundary,
respectively. A few additional simulations are also carried out using a different inlet
profile and/or by imposing symmetry boundary conditions on the confining walls.
The presence of the cylinder is simulated by an immersed-boundary technique that
preserves second-order accuracy. Finally, the resulting semi-discrete equations are
advanced in time by a mixed Crank–Nicholson/Adams–Bashforth scheme, in which
the diffusive terms and the pressure field are treated implicitly and the convective
terms explicitly. Thus, a linear system is solved at each time iteration by an LU
factorization of the system matrix.

A linear temporal stability analysis has also been carried out on both the steady and
time-averaged flow fields to gain a deeper comprehension of the inversion process.
For this, the flow is decomposed into a base flow and a small-amplitude disturbance,
which depends exponentially on time. The linearized equations for the disturbance are
discretized in space with the same finite-difference scheme adopted for the temporal
simulations, and the resulting generalized eigenvalue problem is solved with an inverse
iteration algorithm. Further details on the numerical schemes and the stability analysis
can be found in Camarri & Giannetti (2006) and Giannetti & Luchini (2007).

Two grids were used for the case β = 1/8, namely a uniform one (UG) and
a stretched one (SG8), whereas two stretched grids have been used for β = 1/6 and
1/10; more details are given in table 1. The stretched grids allow a finer grid resolution
near the cylinder and are built as described in Camarri & Giannetti (2006). For the
temporal discretization, a non-dimensional time step �T Uc/D equal to 5 × 10−3 has
been used on the stretched grids and one equal to 2.5 × 10−2 on the uniform grid.

Preliminary simulations of the case β = 1/8 have been carried out to check the grid
convergence of the results and the sensitivity to the dimensions of the computational
domain. The value of the simulated vortex-shedding frequency has been monitored, as
it is a sensitive parameter and a good indicator of the simulation quality, as confirmed
for instance in Turki et al. (2003) and in Breuer et al. (2000). The shedding frequency
f is given in terms of the Strouhal number St (St = f D/Uc). It was found that on
grid SG8 St changes only at the 5th decimal unit when Li/D is halved or when Lo/D

is reduced by 25%. To check grid convergence, a set of simulations with increasing
spatial resolution was carried out on the computational domain of grid SG8 at the
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Figure 2. (a) Strouhal number vs. Reynolds number obtained on grid SG8 at different
blockage ratios, together with results from Breuer et al. (2000). (b) x-coordinate (xinv/D) of
the intersection point of the vortex trajectories vs. Reynolds number.

highest Reynolds number considered here, Re =166. The starting resolution, 204 × 74,
was progressively increased by a factor approximately equal to 1.35 in each spatial
direction. Besides St, the x-coordinate, xinv, at which the trajectories of the wake
vortices intersect the line y =0 was monitored (details are given in § 3). The tests
showed that convergence of the results was obtained on SG8, and a further increase
in spatial resolution up to 800 × 300 involved variations of the Strouhal number as
low as 0.2% and of xinv of about 0.9% (�xinv < 0.06D). At Re = 90, St obtained with
grid UG is only 1.6% higher than obtained with grid SG8 and xinv is about 1.3%
larger than in SG8, indicating that grid UG can be safely used up to this value
of Re.

The numerical tools for the linear stability analysis were also validated by evaluating
the critical Reynolds number for vortex shedding instability for β = 1/8 using grid
UG. An unstable global mode was found at Recr =59, which is in good agreement
with the value Recr � 60 found in Breuer et al. (2000). Also, the frequency of the
linearly unstable mode, St= 0.1196, is in good agreement with the frequency of
oscillation of the wake, St =0.1198, found by numerical simulation at Re = 60 in
Breuer et al. (2000).

3. Results and discussion
In figure 2(a) the Strouhal number is plotted as a function of the Reynolds number

obtained with the non-uniform grids for blockage ratios β = 1/6, 1/8, and 1/10. The
results obtained in Breuer et al. (2000) for β = 1/8 using a finite volume method are
also reported for validation; they are in good agreement with those obtained here,
the maximum difference in St being approximately 0.8% at Re = 166. In agreement
with the findings of Turki et al. (2003), St increases with increasing β , while the shape
of the St vs. Re curve does not significantly change with β .

In figure 3(a) an instantaneous vorticity field, obtained for β = 1/8 with grid SG8,
is plotted together with the trajectories of the wake vortices and some profiles of the
time-averaged streamwise velocity. The trajectories of the vortices are obtained by
following the local minima of pressure in time. Figure 3(a) shows that vortices are
shed from the cylinder as in the unconfined case, i.e. negative vortices (dark grey)
from the top and positive (light grey) from the bottom, but at about 10 diameters
behind the cylinder the trajectories of the positive and negative vortices cross the
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Figure 3. Grid SG8, β = 1/8, Re =90: (a) trajectory of the wake vortices, identified by the
criterion given in Hunt, Wray & Moin (1988) and shown by a dashed line. The vorticity, made
non-dimensional by D and Uc , ranges from −0.8 (dark grey) to +0.8 (white). (b) Some profiles
of the time-averaged streamwise velocity as sketched along the wake in (a).

symmetry plane y = 0 and their positions become inverted, i.e. the positive vortices
stay in the y > 0 region and the negative ones in y < 0. The x-section at which the
vortex trajectories intersect (xinv) has been determined and is plotted in figure 2(b) as
a function of the Reynolds number. For each value of β , xinv decreases monotonically
with Re and the trend is almost linear when Re is larger than a threshold value,
which seems to increase weakly with β . The value of xinv decreases with increasing
β and the three curves of figure 2(b) are almost parallel in the region of linearity.
A possible interpretation of the monotone decrease of xinv with Reynolds number is
given in the following.

The flow around a cylinder confined in a channel differs from the unconfined case
with uniform free-stream velocity mainly in three factors: (a) the vorticity of the
incoming flow, (b) the confinement effect and (c) the production of new vorticity due
to the no-slip boundary conditions on the confining walls. Some simulations have
therefore been carried out on grid UG with the objective of isolating the effects of
each factor on the inversion of the von Kármán street.

In order to keep only the effect of confinement, one simulation was carried out for
β = 1/8 with constant inflow profile (no vorticity in the incoming flow) and symmetry
boundary conditions on the confining walls. In this case the reference velocity is the
constant inflow velocity and two Reynolds numbers have been simulated, Re =90
and 160. As also confirmed by simulations of a similar configuration available in
Suzuki et al. (1993), no inversion of the wake vortices was observed.

At a later stage, the effect of both flow confinement and the vorticity of the incoming
flow were kept. This was done by imposing the Poiseuille profile at the inflow, as
in the original case, and symmetry boundary conditions on the confining walls, thus
interrupting the vorticity production mechanism mentioned above and avoiding the
presence of an intense vorticity layer near the confining walls. These simulations were
carried out at Re = 90 and 160. An instantaneous vorticity field obtained at Re =90
is plotted in figure 4, where the inversion of the wake vortices can be observed,
and a similar result is found for Re = 160. It may thus be deduced that, at least at
the blockage ratio considered and in the range 90 � Re � 160, the flow confinement
and the free-stream vorticity are sufficient to cause the inversion of the von Kármán
street. This might seem in contrast with the claim in Suzuki & Suzuki (1994) that the
inversion of the von Kármán street is mainly caused by the vorticity layers on the
sidewalls, which are reinforced by the production of new vorticity and lifted up from
the walls. But it is important to point out that in Suzuki & Suzuki (1994) a blockage
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Figure 4. Grid UG, Re = 90, Poiseuille profile imposed at the inflow boundary, symmetry
boundary conditions on the confining walls: detailed view of the wake vortices. The non-
dimensional vorticity ranges from −0.5 (dark grey) to +0.5 (white).

ratio β =0.3 is investigated, for which the interaction between the wake and the flow
near the confining walls is more complex and important than in the present case.
However, our computations show that the vorticity layer near the confining walls does
not play a dominant role in the inversion of the von Kármán street at least for low
values of the blockage ratio, while the fundamental mechanism is the entrainment
of the vorticity of the incoming flow into the wake. The elimination of the no-slip
boundary conditions on the sidewalls decreases the complexity of the flow in the wake
and simplifies the interpretation of the phenomenon. The sign of the incoming-flow
vorticity in figure 4 has been highlighted by arrows indicating the direction of rotation
of the fluid particles. The free-stream vorticity is convected into the wake due to the
velocity induced by the wake vortices and, in turn, induces a velocity in the wake
vortices which tends to push them towards the inverted position that can be observed
further downstream. The new vorticity that is generated near the confining walls
in the original flow (when no-slip boundary conditions are applied) reinforces this
mechanism, because it has the same sign as the vorticity of the incoming flow, i.e.
positive for y > 0 and negative for y < 0.

To confirm our interpretation of figure 4, further tests were carried out in which
symmetry boundary conditions are again imposed on the confining walls and the
Poiseuille flow is substituted by a piecewise-constant velocity profile. As sketched in
figure 5, the new profile is symmetrical with respect to y =0, where the velocity is
maximum, and has two discontinuities at y/D = ± 2.667. On each side (y > 0 and
y < 0), the location of the vorticity sheet is chosen to coincide with the centre of
gravity of the vorticity distribution of the original Poiseuille profile. The new profile
has the same mass flow rate as the Poiseuille one, and the mean velocity over the
channel height Um is now the reference velocity for the tests, which have been carried
out at Rem = Um D/ν = 90. The variation of the velocity �u at the discontinuity is
directly proportional to the intensity of the vorticity sheets, and four simulations have
been carried out, with �u =0.1, 0.2, 0.3, 0.4. As in the case of the Poiseuille profile,
positive vorticity is introduced for y > 0 and negative for y < 0. The resulting vorticity
fields are shown in figure 5: consistently with our interpretation of the role of the
incoming-flow vorticity, the vertical distance between the wake vortices decreases from
�u =0.1 to 0.2, and inversion occurs when �u = 0.3. When �u is further increased
to �u = 0.4, inversion is anticipated and the vertical distance between the opposite
vortices in the far wake is increased.

The dominant role played in the inversion by the incoming flow vorticity might also
explain the monotone decrease of the inversion length xinv as the Reynolds number is
increased (see figure 2b). For fixed blockage ratio and fluid properties, the amount of
vorticity of each sign contained in the undisturbed Poiseuille flow increases linearly
with the flow Reynolds number (both being linearly proportional to the centreline
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Figure 5. Grid UG, piecewise-constant inflow profile (qualitatively sketched on the left-hand
side), symmetry boundary conditions on the confining walls, Re =90: instantaneous vorticity
fields obtained by varying the velocity discontinuity �u in the inflow profile. Light and dark
colours stand for positive and negative values, respectively.

velocity), and the effect on the inversion is then qualitatively the same as that observed
in figure 5, where the incoming-flow vorticity was controlled artificially.

Returning to the original flow, figure 3(b), plotting time-averaged streamwise
velocity profiles at different x-sections, shows that the velocity defect in the wake
disappears after the inversion of the von Kármán street. The velocity induced on the
centreline by a street with negative vortices in the upper part (as in the unconfined
wakes) is directed upwind and, therefore, generates a velocity defect in the mean
profile, while the opposite happens when the von Kármán street is inverted, as shown
in figure 3(a). Note that the disappearance of the velocity defect at a finite distance
from the cylinder is a fundamental difference with the unconfined case, where it
happens only asymptotically far from the cylinder.

To further investigate the connection between the velocity defect and the inversion
of the wake vortices, a linear stability analysis of the flow has been carried out at
Re =90 (grid UG), taking as the base flow the time-averaged flow field obtained from
the temporal simulation, where the wake defect is recovered at xinv � 10 (see figure 3b).
Examples of such an analysis may be found in Monkewitz, Huerre & Chomaz (1993)
and Hammond & Redekopp (1997). Using the time-averaged flow as the base flow
retains some nonlinearity in the stability analysis, a significant feature in our case,
where the recovery of the velocity defect in the wake is strongly enhanced by the
von Kármán street. An unstable linear mode is found, whose frequency (St = 0.1368)
is almost identical to that of vortex shedding in the simulation (St = 0.137). This
mode was superposed on the time-averaged flow and it was verified that in the
resulting field wake vortices are present, and they cross the centreline approximately
where the velocity defect of the wake disappears, i.e. at a position independent
of the relative weight by which the linearly unstable mode is added to the base
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flow (see figure 6, where the unstable mode, the averaged flow field and their sum
are plotted). The vorticity of the unstable mode and of the averaged flow field is
symmetrical and antisymmetrical, respectively, with reference to the centreline y =0,
as in the unconfined case. However, unlike the unconfined case, the disappearance
of the wake defect implies a change in the vorticity sign of the base flow moving
downstream near the centreline, as can be deduced from figure 6(b). Thus, in the
sum of fields (a) (symmetrical) and (b) (antisymmetrical), the sign of the vortices near
y = 0 must change in crossing the point where the wake defect disappears, since, at
that point, field (a) is unchanged and symmetrical, while the sign of (b) is reversed.

The same qualitative behaviour is observed when the stability analysis is carried
out taking as the base flow the steady solution of the Navier–Stokes equations, found
numerically by the Newton–Raphson method, at Reynolds numbers for which the
vortex shedding instability would be present. In this case, however, the disappearance
of the velocity defect in the base flow takes place at a distance which is larger than
in the time-averaged flow field, and which decreases as β is increased. In particular,
while for β = 1/8 the disappearance of the velocity defect was not observed on UG,
for β = 1/2 it is found at about x � 12D.

These results suggest the existence of a correlation between velocity defect in the
wake and inversion. It is then reasonable to expect that the von Kármán street should
invert approximately where the velocity defect disappears, provided the vortices are
still sufficiently strong. If this holds, since it can be shown that in stable channel flow
the Poiseuille profile is recovered at a finite distance behind the cylinder, the inversion
should also be observed for low values of β . This is in contrast to Suzuki et al. (1993),
where the inversion was not observed when β < 0.1. In particular, they simulated
the case β = 0.05 with a very large computational domain, i.e. Li = 39.5D and
Lo = 199.5D, but with a very coarse grid. Although clustered around the cylinder, they
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used only 207 and 54 nodes in the x- and y-directions, giving an average resolution
�x � 1.15D and �y � 0.37. In our opinion, the coarseness of the grid, together with
the use of an upwind scheme (QUICK), might have anticipated the diffusion of the
wake vortices before it was possible to observe their inversion, as confirmed by figure 8
(Case H) of Suzuki et al. (1993), where the instantaneous vorticity field obtained for
Re =75 and β = 0.05 is shown, and from which it is clear that the simulated wake
vortices are completely diffused at about 50 diameters behind the cylinder. The same
configuration was simulated here in a domain of size Li = 12D and Lo = 115.5D with
a uniform discretization �x = �y = 1/8, for Re = 75, identical to that in Suzuki et al.
(1993), and Re = 90. In both cases, inversion of the von Kármán street was observed
about 70 diameters behind the cylinder (not shown here for brevity).

4. Conclusions
The inversion of the von Kármán street in the laminar wake of a symmetrically

confined square cylinder has been studied. Low blockage ratios were considered
(1/10 � β � 1/6), in order to concentrate on cases with a weak interaction between
the wake and the flow close to the confining walls.

The results of this analysis showed that the distance from the cylinder at which
the von Kármán street inverts (xinv) decreases monotonically when either Re or β are
increased, and that the decrease of xinv is linear with respect to Re when Re >∼ 110.

A set of ad-hoc simulations demonstrated that the blockage effect alone is not
sufficient to produce the inversion of the wake street. Conversely, the vorticity of the
incoming flow is of fundamental importance for the inversion since, together with
the blockage effect due to the confining walls, it is sufficient to invert the wake. As a
further confirmation of this, a set of simulations was carried out in which an artificial
inflow condition allowed direct control of the vorticity introduced into the flow. The
results showed that the wake inversion depends on the amount of vorticity introduced
into the flow and that the inversion length decreases as the amount of incoming-flow
vorticity is increased.

It was also pointed out that a significant difference between the flow considered
and the unconfined case is related to the velocity defect in the wake: while in the
unconfined case this defect disappears only asymptotically far from the cylinder, in
the present case this happens at a finite distance, near the point at which the inversion
of the von Kármán street occurs. The close correlation between the disappearance of
the velocity defect in the wake and the inversion of the von Kármán street has been
further demonstrated by a linear stability analysis of the vortex-shedding instability.
As a result of this interpretation, since in the stable channel flow the velocity defect
always disappears at a finite distance from the cylinder, it is reasonable to expect
the inversion of the vortex street to occur also for low values of β . This has been
proved to hold at least for β = 1/20, where the inversion of the von Kármán street
was observed about 70 diameters behind the cylinder. A detailed analysis of the time-
averaged momentum balance, as in Saha et al. (2000), might prove helpful in devising
models to predict the inversion length, by monitoring, for instance, the leading terms
that determine the convexity of the mean streamwise profile on the symmetry line.

Finally, there is no experimental campaign entirely devoted to investigating and
quantifying the inversion of the von Kármán street in the flow considered here in the
literature, only a few qualitative visualizations being reported. This would provide a
necessary validation of, and support for, the present analysis, and help to explain this
interesting phenomenon.
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